DLFCN(3) BSD Library Functions Manual DLFCN(3)NAME
dlopen, dlclose, dlsym, dlvsym, dladdr, dlctl, dlerror — dynamic link
interface
LIBRARY
(These functions are not in a library. They are included in every dynam‐
ically linked program automatically.)
SYNOPSIS
#include <dlfcn.h>
void *
dlopen(const char *path, int mode);
int
dlclose(void *handle);
void *
dlsym(void * restrict handle, const char * restrict symbol);
void *
dlvsym(void * restrict handle, const char * restrict symbol,
const char *version);
int
dladdr(void * restrict addr, Dl_info * restrict dli);
int
dlctl(void *handle, int cmd, void *data);
char *
dlerror(void);
DESCRIPTION
These functions provide an interface to the run-time linker ld.so(1).
They allow new shared objects to be loaded into the process' address
space under program control.
The dlopen() function takes the name of a shared object as the first
argument. The path argument can be specified as either an absolute path‐
name to a shared object or just the name of the shared object itself.
When an absolute pathname is specified, only the path provided will be
searched. When just a shared object name is specified, the same search
rules apply that are used for “intrinsic” shared object searches. (see
ld.elf_so(1))
Shared libraries take the following form: “lib⟨name⟩.so[.xx[.yy]]”.
The shared object is mapped into the address space, relocated, and its
external references are resolved in the same way as is done with the
implicitly loaded shared libraries at program startup.
If the first argument is NULL, dlopen() returns a handle on the global
symbol object. This object provides access to all symbols from an
ordered set of objects consisting of the original program image and any
dependencies loaded during startup.
The mode parameter specifies symbol resolution time and symbol visibil‐
ity. One of the following values may be used to specify symbol resolu‐
tion time:
RTLD_NOW Symbols are resolved immediately.
RTLD_LAZY Symbols are resolved when they are first referred
to. This is the default value if resolution time is
unspecified.
One of the following values may be used to specify symbol visibility:
RTLD_GLOBAL The object's symbols and the symbols of its depen‐
dencies will be visible to other objects.
RTLD_LOCAL The object's symbols and the symbols of its depen‐
dencies will not be visible to other objects. This
is the default value if visibility is unspecified.
To specify both resolution time and visibility, bitwise inclusive OR one
of each of the above values together. If an object was opened with
RTLD_LOCAL and later opened with RTLD_GLOBAL, then it is promoted to
RTLD_GLOBAL.
Additionally, one of the following flags may be ORed into the mode argu‐
ment:
RTLD_NODELETE Prevents unload of the loaded object on dlclose().
The same behaviour may be requested by -z nodelete
option of the static linker ld(1).
RTLD_NOLOAD Only return valid handle for the object if it is
already loaded in the process address space, oth‐
erwise do not load the object and return NULL.
dlopen() returns a handle to be used in calls to dlclose(), dlsym(),
dlvsym(), and dlctl(). If the named shared object has already been
loaded by a previous call to dlopen() (and not yet unloaded by
dlclose()), a handle referring to the resident copy is returned.
dlclose() unlinks and removes the object referred to by handle from the
process address space. If multiple calls to dlopen() have been done on
this object, or the object was one loaded at startup time, or the object
is a dependency of another object then the object is removed when its
reference count drops to zero. dlclose() returns 0 on success and non-
zero on failure.
dlsym() looks for a definition of symbol in the shared object designated
by handle, and all shared objects that are listed as dependencies. The
symbol's address is returned. If the symbol cannot be resolved, NULL is
returned.
dlsym() may also be called with special handle values. dlsym() respects
symbol visibility as specified by the dlopen() mode parameter. However,
the symbols of an object's dependencies are always visible to it. All
shared objects loaded at program startup are globally visible. Only the
symbols in the main executable that are referenced by a shared object at
link time will be visible unless it has been linked with the --export-
dynamic option where all of its symbols will be visible. The following
special handle values may be used with dlsym():
NULL Interpreted as a reference to the executable or
shared object from which the call is being made.
Thus an object can reference its own symbols and
the symbols of its dependencies without calling
dlopen().
RTLD_DEFAULT All the visible shared objects and the executable
will be searched in the order they were loaded.
RTLD_NEXT The search for symbol is limited to the visible
shared objects which were loaded after the one
issuing the call to dlsym(). Thus, if dlsym() is
called from the main program, all the visible
shared libraries are searched. If it is called
from a shared library, all subsequently visible
shared libraries are searched.
RTLD_SELF The search for symbol is limited to the shared
object issuing the call to dlsym() and those shared
objects which were loaded after it that are visi‐
ble.
dlvsym() does the same as dlsym() but takes a version string as an addi‐
tional argument. Both the symbol and the version must match in order for
the symbol to be resolved.
dladdr() examines all currently mapped shared objects for a symbol whose
address -- as mapped in the process address space -- is closest to but
not exceeding the value passed in the first argument addr. The symbols
of a shared object are only eligible if addr is between the base address
of the shared object and the value of the symbol “_end” in the same
shared object. If no object for which this condition holds true can be
found, dladdr() will return 0. Otherwise, a non-zero value is returned
and the dli argument will be used to provide information on the selected
symbol and the shared object it is contained in. The dli argument points
at a caller-provided Dl_info structure defined as follows:
typedef struct {
const char *dli_fname; /* File defining the symbol */
void *dli_fbase; /* Base address */
const char *dli_sname; /* Symbol name */
const void *dli_saddr; /* Symbol address */
} Dl_info;
The structure members are further described as follows:
dli_fname The pathname of the shared object containing the address
addr.
dli_fbase The base address at which this shared object is loaded in
the process address space. This may be zero if the symbol
was found in the internally generated “copy” section (see
link(5)) which is not associated with a file.
dli_sname points at the nul-terminated name of the selected symbol
dli_saddr is the actual address (as it appears in the process address
space) of the symbol.
Note: both strings pointed at by dli_fname and dli_sname reside in memory
private to the run-time linker module and should not be modified by the
caller.
In dynamically linked programs, the address of a global function will
point to its program linkage table entry, rather than to the entry point
of the function itself. This causes most global functions to appear to
be defined within the main executable, rather than in the shared
libraries where the actual code resides.
dlctl() provides an interface similar to ioctl(2) to control several
aspects of the run-time linker's operation. This interface is currently
under development.
dlerror() returns a character string representing the most recent error
that has occurred while processing one of the other functions described
here. If no dynamic linking errors have occurred since the last invoca‐
tion of dlerror(), dlerror() returns NULL. Thus, invoking dlerror() a
second time, immediately following a prior invocation, will result in
NULL being returned.
ERRORS
The error “Cannot dlopen non-loadable /usr/lib/libpthread.so.1” is gener‐
ated when a program dlopen()s a module that needs libpthread but isn't
linked against it itself.
SEE ALSOld(1), rtld(1), link(5)HISTORY
Some of the dl* functions first appeared in SunOS 4.
BSD June 25, 2011 BSD